
Exercises for Memory-Efficient Computing

Finding optimal block

1. Use the script cpu_vs_memory.py in order to find the best block size for computing the evaluation of
a certain expression (polynomial).

• Which is the best block size? How does that compare to the size of L1 and L2 cache?

• How is the speed-up compared with a raw evaluation?

• Why do you think the blocked calculation is faster than the raw one (for optimal blocksize)?

Optimizing arithmetic expressions

1. Use script poly1.py to check how much time it takes to evaluate the next polynomial:

y = .25*x**3 + .75*x**2 - 1.5*x - 2

with x in the range [-1, 1], and with 10 millions points.

• Set the what parameter to "numexpr" and take note of the speed-up versus the "numpy" case.
Why do you think the speed-up is so large?

2. The expression below:

y = ((.25*x + .75)*x - 1.5)*x - 2

represents the same polynomial than the original one, but with some interesting side-effects in
efficiency. Repeat the computation for numpy and numexpr and get your own conclusions.

• Why do you think numpy is doing much more efficiently with this new expression?

• Why the speed-up in numexpr is not so high in comparison?

• Why numexpr continues to be faster than numpy?

3. The C program poly.c does the same computation than above, but in pure C. Compile it like this:

gcc -O3 -o poly poly.c -lm

and execute it.

• Why do you think it is more efficient than the above approaches?

Parallelism with threads

4. Be sure that you are on a multi-processor machine and repeat the last computation in poly1.py but
increasing the number of threads one by one (change the number in the for nt in range(1):
loop).

• How the efficiency scales?

• Why do you think it scales that way?

• How performance compares with the pure C computation?

5. With the same multi-processor, recompile the above poly.c, but with OpenMP support:

gcc -O3 -o poly poly.c -lm -fopenmp # notice the new -fopenmp flag!

and execute it for several numbers of threads:

OMP_NUM_THREADS=desired_number_of_threads ./poly

Compare its performance with the parallel numexpr.

• How the efficiency scales?

• Which is the asymptotic limit?

6. Modify poly.c so that it just copies vector x in y:

y[i] = x[i]

and run it for a different number of threads.

• Compare the performance of this with polynomial evaluation.

• Why it scales very similarly than the polynomial evaluation?

• Could you have a guess at the memory bandwidth of this machine?

	Finding optimal block
	Optimizing arithmetic expressions
	Parallelism with threads

