Example Code

https://python.g-node.org/wiki/cython
Introduction

Example Code

Introduction
- Motivation
- Motivation (continued)
- Use Cases
- Tutorial Overview

From Python to Cython
Handling NumPy Arrays
Parallelization
Wrapping C and C++ Libraries
Motivation

- Example Code
- Introduction
 - Motivation
 - Motivation (continued)
 - Use Cases
 - Tutorial Overview
- From Python to Cython
- Handling NumPy Arrays
- Parallelization
- Wrapping C and C++ Libraries

Diagram:

- EASE OF USE
 - PYTHON
 - CYTHON
 - NUMPY
- SPEED
 - FORTRAN
- (YOUR TIME)
- (COMPUTER TIME)
- TEA BREAK
Motivation (continued)

- Cython allows us to cross the gap
- This is good news because
 - we get to keep coding in Python (or, at least, a superset)
 - but with the speed advantage of C
- You can’t have your cake and eat it. *Or can you?*
- Conditions / loops approx. 2–8x speed increase, 30% overall; with annotations: hundreds of times faster
Use Cases

- Optimize execution of Python code (profile, if possible! – demo)
- Wrap existing C and C++ code
- Breaking out of the Global Interpreter Lock; openmp
- Mixing C and Python, but without the pain of the Python C API
Tutorial Overview

For this quick introduction, we’ll take the following approach:

1. Take a piece of pure Python code and benchmark (we’ll find that it is too slow)
2. Run the code through Cython, compile and benchmark (we’ll find that it is somewhat faster)
3. Annotate the types and benchmark (we’ll find that it is much faster)

Then we’ll look at how Cython allows us to

- Work with NumPy arrays
- Use multiple threads from Python
- Wrap native C libraries
From Python to Cython

Example Code

Introduction

From Python to Cython

- Benchmark Python code
- More Segments
- Benchmark Python Code
- Compile the code with Cython
- Compile generated code
- Benchmark the new code
- Providing type information
- Benchmark
- Expense of Python
- Function Calls
- The Last Bottlenecks
- Integrating Arbitrary Functions (callbacks)

Handling NumPy Arrays

Parallelization

Wrapping C and C++ Libraries
Benchmark Python code

Our code aims to compute (an approximation of) \(\int_{a}^{b} f(x) \, dx \)

N=4
\[dx = \frac{2}{N} \]
More Segments

- Example Code

Introduction

From Python to Cython
- Benchmark Python code
 - More Segments
- Benchmark Python Code
- Compile the code with Cython
 - Compile generated code
 - Benchmark the new code
 - Providing type information
- Benchmark
- Expense of Python Function Calls
 - The Last Bottlenecks
 - Integrating Arbitrary Functions (callbacks)
- Handling NumPy Arrays

Parallelization

Wrapping C and C++ Libraries
Benchmark Python Code

```python
from __future__ import division

def f(x):
    return x**4 - 3 * x

def integrate_f(a, b, N):
    """Rectangle integration of a function."

    Parameters
    --------
    a, b : int
        Interval over which to integrate.
    N : int
        Number of intervals to use in the discretisation.

    """
    s = 0
    dx = (b - a) / N
    for i in range(N):
        s += f(a + i * dx)
    return s * dx
```
Compile the code with Cython

- `cython filename.[py|pyx]`
- What is happening behind the scenes? `cython -a filename.[py|pyx]`
 - Cython translates Python to C, using the Python C API (let’s have a look)
- This code has some serious bottlenecks.
Compile generated code

$ gcc -O2 -fPIC -I/usr/include/python2.7 -c integrate.c -o integrateCompiled.o

Easier yet, construct setup.py:

```python
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import import build_ext

setup(
    cmdclass = {’build_ext’: build_ext},
    ext_modules = [
        Extension("integrate", ["integrate.pypx"],
    ])

Run using python setup.py build_ext -i. This means: build extensions «in-place».
```
Benchmark the new code

- Use IPython’s %timeit (could do this manually using from timeit import timeit; timeit(...))
- Slight speed increase ($\approx 1.4\times$) probably not worth it.
- Can we help Cython to do even better?
 - Yes—by giving it some clues.
 - Cython has a basic type inferencing engine, but it is very conservative for safety reasons.
 - Why does type information allow such vast speed increases?
Providing type information

from __future__ import division

def f(double x):
 return x**4 - 3 * x

def integrate_f(double a, double b, int N):
 """Rectangle integration of a function.
 ..."""
 cdef:
 double s = 0
 double dx = (b - a) / N
 size_t i
 for i in range(N):
 s += f(a + i * dx)
 return s * dx
Benchmark...
Expense of Python Function Calls

```python
def f(double x):
    return x**4 - 3 * x

def integrate_f(double a, double b, int N):
cdef:
    double s = 0
    double dx = (b - a) / N
    size_t i

    for i in range(N):
        s += f(a + i * dx)

    return s * dx
```

![Diagram showing Python and C layers with expensive and cheap segments](Diagram.png)
The Last Bottlenecks

Example Code

Introduction

From Python to Cython

Benchmark Python code

More Segments

Benchmark Python Code

Compile the code with Cython

Compile generated code

Benchmark the new code

Providing type information

Benchmark

Expense of Python Function Calls

The Last Bottlenecks

Integrating Arbitrary Functions (callbacks)

Handling NumPy Arrays

Parallelization

Wrapping C and C++ Libraries

cython: cdivision=True

cdef double f(double x):
 return x**x**x**x - 3 * x

def integrate_f(double a, double b, int N):
 cdef:
 double s = 0
 double dx = (b - a) / N
 size_t i

 for i in range(N):
 s += f(a + i * dx)

 return s * dx
Benchmark!
Integrating Arbitrary Functions (callbacks)

cython: cdivision=True

cdef class Integrand:
 cdef double f(self, double x):
 raise NotImplementedError()

cdef class MyFunc(Integrand):
 cdef double f(self, double x):
 return x*x*x*x - 3 * x

def integrate_f(Integrand integrand,
 double a, double b, int N):
 cdef double s = 0
 cdef double dx = (b - a) / N
 cdef ssize_t i
 for i in range(N):
 s += integrand.f(a + i * dx)
 return s * dx
Exploring Cython Further
Handling NumPy Arrays

Example Code

Introduction

From Python to Cython

Handling NumPy Arrays

Declaring the MemoryView type
Declaring the Numpy Array type
Matrix Multiplication
Our Own MatMul

Parallelization

Wrapping C and C++ Libraries

Handling NumPy Arrays
Declaring the MemoryView type

```python
import numpy as np

def foo(double[::, ::1] arr):
    cdef double[::, ::1] = np.zeros_like(arr)
    cdef size_t i, j
    for i in range(arr.shape[0]):
        for j in range(arr.shape[1]):
            out[i, j] = arr[i, j] * i + j

    return np.asarray(out)
```

Example Code

Introduction

Handling NumPy Arrays
 • Declaring the MemoryView type
 • Declaring the Numpy Array type
 • Matrix Multiplication
 • Our Own MatMul

Parallelization

Wrapping C and C++ Libraries
Declaring the Numpy Array type

An alternative to the MemoryView syntax that corresponds more closely with ndarray dtypes:

```python
cimport numpy as cnp
import numpy as np

def foo( cnp.ndarray[cnp.float64, ndim=2] arr):
    cdef cnp.ndarray[cnp.float64, ndim=2] out = np.zeros(arr.shape)
    cdef size_t i, j
    for i in range(arr.shape[0]):
        for j in range(arr.shape[1]):
            arr[i, j] = i + j

    return out
```

Different types are defined in Cython/Includes/numpy.pxd.
Matrix Multiplication

```python
rows_A, cols_A = A.shape[0], A.shape[1]
rows_B, cols_B = B.shape[0], B.shape[1]

out = np.zeros(rows_A, cols_B)

# Take each row in A
for i in range(rows_A):
    # And multiply by each column in B
    for j in range(cols_B):
        s = 0
        for k in range(cols_A):
            s = s + A[i, k] * B[k, j]
        out[i, j] = s
```

Our Own MatMul

We won’t even try this in pure Python (way too slow).

```python
def dot(A, B, out):
    cdef:
        size_t rows_A, cols_A, rows_B, cols_B
        size_t i, j, k
        double s

    rows_A, cols_A = A.shape[0], A.shape[1]
    rows_B, cols_B = B.shape[0], B.shape[1]

    # Take each row in A
    for i in range(rows_A):
        # And multiply by every column in B
        for j in range(cols_B):
            s = 0
            for k in range(cols_A):
                s = s + A[i, k] * B[k, j]
            out[i, j] = s
```

Example Code
Parallelization

Introduction
From Python to Cython
Handling NumPy Arrays

Parallelization
- Parallel Loops with "prange"

Wrapping C and C++ Libraries
Parallel Loops with «prange»

```python
@cython.boundscheck(False)
@cython.wraparound(False)

def pdot(double[:, :, ::1] A,
    double[:, :, ::1] B,
    double[:, :, ::1] out):
    cdef:
        size_t rows_A, cols_A, rows_B, cols_B
        size_t i, j, k
        double s
    rows_A, cols_A = A.shape[0], A.shape[1]
    rows_B, cols_B = B.shape[0], B.shape[1]

    with nogil:
        # Take each row in A
        for i in prange(rows_A):
            # And multiply by every column in B
            for j in range(cols_B):
                s = 0
                for k in range(cols_A):
                    s = s + A[i, k] * B[k, j]
                out[i, j] = s
```

Example Code

Introduction

From Python to Cython

Handling NumPy Arrays

Parallelization

- Parallel Loops with «prange»

Wrapping C and C++ Libraries
Benchmark!
Wrapping C and C++ Libraries

Example Code
Introduction
From Python to Cython
Handling NumPy Arrays
Parallelization
Wrapping C and C++ Libraries
 • Fortran
 • External Definitions
 • Build: Link Math Library
 • C++ Class Wrapper
 • C++ Class Wrapper
 • C++ Class Wrapper
 • In conclusion...
We won’t be talking about that here, but Ondrej Certik has some excellent notes:

http://fortran90.org/src/best-practices.html#interfacing-with-python
External Definitions

Create a file, `trig.pyx`, with the following content:

```python
from math import cos, sin, tan
from math import pi as M_PI

def test_trig():
    print('Some trig functions from C:
          cos(0), cos(M_PI)
```
Build: Link Math Library

```python
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup(
    cmdclass = {'build_ext': build_ext},
    ext_modules = [
        Extension("trig",
            ['trig.pyx'],
            libraries=['m'],
        ),
    ]
)
```
C++ Class Wrapper

```cpp
namespace geom {
  
  class Circle {
  public:
    Circle(double x, double y, double r);
    ~Circle();
    double getX();
    double getY();
    double getRadius();
    double getArea();
    void setCenter(double x, double y);
    void setRadius(double r);
  
  private:
    double x;
    double y;
    double r;
  
  }
}
```
C++ Class Wrapper

cdef extern from "Circle.h" namespace "geom":
cdef cppclass Circle:
 Circle(double, double, double)
 double getX()
 double getY()
 double getRadius()
 double getArea()
 void setCenter(double, double)
 void setRadius(double)
C++ Class Wrapper

cdef class PyCircle:

cdef Circle *thisptr

def __cinit__(self, double x, double y, double r):
 self.thisptr = new Circle(x, y, r)

def __dealloc__(self):
 del self.thisptr

@property
def area(self):
 return self.thisptr.getArea()

@property
def radius(self):
 return self.thisptr.getRadius()

def set_radius(self, r):
 self.thisptr.setRadius(r)

@property
def center(self):
 return (self.thisptr.getX(), self.thisptr.getY())
C++ Class Wrapper

```python
from distutils.core import setup
from distutils.extension import Extension
from Cython.Distutils import build_ext

setup(
    cmdclass = {'build_ext': build_ext},
    ext_modules = [
        Extension("circ", ["circ.pyx", "Circle.cpp"],
            language="c++"),
        Extension("trig", ["trig.pyx"],
            libraries=["m"]),
    ]
)
```
In conclusion...

- Build functional and tested code
- Profile
- Re-implement bottlenecks (behavior verified by tests)
- Et voilà—high-level code, low-level performance. [It’s no silver bullet, but it’s still pretty good.]